EXAM MANIFOLDS APRIL 1 2019, 8:30-11:30

- -You are not allowed to use books, notes, notebooks, mobile phones, tablets, etc.
- -If you are leaving temporarily the room, please hand in your mobile phone to the supervisors.
- -For each question, you are expected to provide complete arguments; YES/NO do not suffice.
- -Please write the letter and the number of the (sub)problem you are solving (e.g. "Problem C. (2)")
- -Write the answers either in English or in Dutch.
- -Don't forget to write your name on each sheet of paper you are handing in.

Problem A. (2 pts) Consider the stereographic projection on the 2-sphere

$$\pi_n: S^2 \setminus \{n\} \longrightarrow \mathbb{C}, \quad \pi_n(a, b, c) = \frac{a + \mathbf{i}b}{1 - c} \in \mathbb{C},$$

where n = (0, 0, 1) and we identify $\mathbb{C} \cong \mathbb{R}^2$, via the map $z = x + iy \mapsto (x, y)$.

Show that for any complex polynomial $f \in \mathbb{C}[z]$ there exists a unique smooth function $\underline{f}: S^2 \to S^2$ which satisfies on $S^2 \setminus \{n\}$ the equality:

$$f \circ \pi_n = \pi_n \circ \underline{f}.$$

Problem B. (2 pts) On \mathbb{R}^2 consider the vector fields

$$X = \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}, \quad Y = \frac{\partial}{\partial x}$$

and the differential one-form

$$\omega = xdy - ydx.$$

- (1) Calculate [X, Y] and $d\omega$ and $\iota_X \omega$.
- (2) Calculate the flow X on \mathbb{R}^2 ; i.e. $\phi_X^t(x,y)$, for $(x,y) \in \mathbb{R}^2$.
- (3) Check the following formula through a direct calculation:

$$\frac{d}{dt}(\phi_X^t)^*(\omega)\big|_{t=0} = d\iota_X\omega + \iota_X d\omega.$$

Problem C. (2 pts) Let $f: M \to N$ be a surjective submersion between smooth manifolds.

- (1) Show that f is an open map (i.e. f(U) is open, for every open set $U \subset M$).
- (2) Show that for any vector field $Y \in \mathfrak{X}(N)$ there exists a vector field $X \in \mathfrak{X}(M)$ which is f-related to Y, i.e.

$$d_p f(X_p) = Y_{f(p)}, \text{ for all } p \in M.$$

Hint: use a partition of unity.

Problem D. (2 pts) We regard the 2-torus $T := S^1 \times S^1 \subset \mathbb{C}^2$, as a Lie group with multiplication $(z_1, z_2) \cdot (w_1, w_2) = (z_1 \cdot w_1, z_2 \cdot w_2)$. Denote the left translation by $g \in T$ by

$$\lambda_q: T \to T, \quad \lambda_q(h) = gh.$$

(1) A one-form $\alpha \in \Omega^1(T)$ is called **left invariant** if it satisfies

$$\lambda_a^*(\alpha) = \alpha$$
, for all $g \in T$.

Show that every left invariant one-form on T is closed.

Hint: write this condition in "angle coordinates" $\theta_1, \theta_2 \in \mathbb{R}/2\pi\mathbb{Z}$ on T.

(2) Let α be a closed 1-form on T. Show that the integral

$$\int_{S^1 \times \{z\}} \alpha$$

is independent of $z \in S^1$ (where we use the counterclockwise orientation on $S^1 \times \{z\}$).

Problem E. (2 pts) Let M be a 2-dimensional smooth manifold. Let $p \in M$, and let $X \in \mathfrak{X}(M)$ be a vector field such that $X_p \neq 0$.

- (1) Show that there exists a smooth curve $\gamma:(-\epsilon,\epsilon)\to M$, with $\gamma(0)=p$, such that the vectors $v:=\gamma'(0)$ and $w:=X_p$ form a basis of T_pM .
- (2) Let ϕ_X^t denote the flow of X and let γ be as in item (1). Show that the map $\varphi(t,s) = \phi_X^t(\gamma(s))$ defines a diffeomorphism between a neighborhood of (0,0) in \mathbb{R}^2 and a neighborhood of p in M.
- (3) Show that there exists a smooth chart $(U,(x^1,x^2))$ around p in which $X|_U = \frac{\partial}{\partial x^1}$.