Questions Resit Exam NWI-WB046B (only written part)

1. (10 points) Maximum principle

Assume $u \in C^{1,2}(\Omega_T)$ with $\Omega_T = (0,T] \times \Omega$ for $\Omega \subseteq \mathbb{R}^n$ bounded and open. Consider the partial differential operator

$$Lu := u_t - \Delta u + \sum_{i=1}^n b_i u_{x_i} + cu, \quad \text{on } \Omega_T,$$

with $b = (b_1, \ldots, b_n) \in \mathbb{R}^n$ and $c \in C(\overline{\Omega_T})$. Show that if $Lu \leq 0$ and $c \geq 0$ on Ω_T then

$$\max_{\overline{\Omega_T}} u \le \max_{\Gamma_T} u^+,$$

where $u^+ = \max(u, 0)$ is the positive part of u and $\Gamma_T := ([0, T] \times \partial \Omega) \cup (\{0\} \times \Omega)$.

(Hint: Distinguish several cases. For the full case $Lu \leq 0$ use a trial function u_{ε} , for example, $u_{\varepsilon} = u + \varepsilon \exp(\alpha x_1)$ for a suitable choice of α .)

2. (10 points) **Decaying solutions**

Let u solve the equation

$$u_{tt} - \Delta u = 0,$$
 in $[0, \infty) \times \mathbb{R}^3,$
 $u = u_0,$ on $\{t = 0\} \times \mathbb{R}^3,$
 $u_t = u_1,$ on $\{t = 0\} \times \mathbb{R}^3,$

where u_0 and u_1 are smooth and have compact support. Show there exists a constant c such that

$$|u(t,x)| \le \frac{c}{t}$$
, for all $x \in \mathbb{R}^3, t > 0$.

3. (10 points) Method of characteristics

(a) Solve the following initial value problem:

$$3u_{x_1} - 3u_{x_2} = u^2$$
 in $(0, \infty) \times \mathbb{R}$,
 $u = g$ on $\Gamma = \{x_2 = 0\}$.

Here, g is a given function. What regularity of g is required to obtain a classical solution?

(b) Let $\Omega \subseteq \mathbb{R}^n$ be open with nonempty C^1 boundary $\partial\Omega$. Consider a first-order partial differential equations with given boundary data of the form

$$F(\nabla u, u, x) = 0 \quad \text{in } \Omega \subseteq \mathbb{R}^n,$$

$$u = g \quad \text{on } \Gamma \subseteq \partial \Omega.$$

Suppose $\Gamma \subseteq \{x_n = 0\}$ locally, F is C^2 and g is C^1 . Assume furthermore that (p^0, z^0, x^0) is an admissible triple (of initial data) for the system of characteristic equations for (p, z, x). Answer the following questions briefly:

- (i) What additional assumption is required to obtain a unique local solution for the system of characteristic equations? (name and condition needed)
- (ii) Why is this assumption required for the proof of local invertibility? (one sentence is enough, *no* proof is needed!)
- (iii) What does it mean intuitively/geometrically?